Startseite Input (allgemein)  

$CONTRL group          (optional) 

          This is a free format group specifying global switches. 

          SCFTYP             together with MPLEVL or CITYP specifies the wavefunction.                                       You may choose from 

                 = RHF       Restricted Hartree Fock calculation (default)

                 = UHF       Unrestricted Hartree Fock calculation 

                 = ROHF      Restricted open shell Hartree-Fock (high spin, see GVB for
                                     low  spin) 

                 = GVB       Generalized valence bond wavefunction or OCBSE type
                                    ROHF (needs $SCF input) 

                 = MCSCF     Multiconfigurational SCF wavefunction (this requires $DET
                                       or  $DRT input) 

                 = NONE      indicates a single point computation, rereading a converged
                                     SCF function.

                             This option requires that you select  CITYP=GUGA or
                            ALDET, RUNTYP=ENERGY,  TRANSITN, or SPINORBT,
                            and GUESS=MOREAD.
 

          MPLEVL =           chooses Moller-Plesset perturbation theory level, after the
                                       SCF.

                 = 0         skips the MP computation (default)
              
  = 2         performs a second order energy correction.  MP2 is
                               implemented only for RHF, UHF, ROHF, and MCSCF wave
                              
functions.  Gradients are available only for RHF, so for the others
                               you  may pick from RUNTYP=ENERGY, TRUDGE, SURFACE,
                               or FFIELD only.
 
                 =4         available only for RHF. 

          CITYP  =      chooses CI computation after the SCF. Any SCFTYP
                                except  UHF may be followed by a CI computation.

                 = NONE      skips the CI. (default)
                
= GUGA      runs the Unitary Group CI package, which requires
                                     $CIDRT input.Gradients are available only for RHF, so for
                                     other  SCFTYPs, you may choose only
                                     RUNTYP=ENERGY, TRUDGE, SURFACE, FFIELD,
                                     TRANSITN, or SPINORBT.

                 = ALDET     runs the Ames Laboratory determinant full CI package,
                                      requiring $CIDET input.  RUNTYP=ENERGY only. 

          Obviously, at most one of MPLEVL or CITYP may be chosen. 

          RUNTYP             specifies the type of computation, for  example at a
                                       single geometry point: 

                 = ENERGY    Molecular energy. (default)

                 = GRADIENT  Molecular energy plus gradient.

                 = HESSIAN   Molecular energy plus gradient plus second
                                       derivatives, including harmonic harmonic vibrational analysis.
                                      
See the $FORCE and $CPHF input groups. 

            multiple geometry options: 

                 = OPTIMIZE  Optimize the molecular geometry using analytic
                                         energy gradients. See $STATPT.

                 = TRUDGE    Non-gradient total energy minimization.
                                      
See groups $TRUDGE and $TRURST.

                 = SADPOINT  Locate saddle point (transition state).
                            
             See the $STATPT group.

                 = IRC       Follow intrinsic reaction coordinate.
                                  See the $IRC group.

                 = GRADEXTR  Trace gradient extremal.
      
                          See the $GRADEX group.

                 = DRC       Follow dynamic reaction coordinate.
                                   See the $DRC group.

                 = SURFACE   Scan linear cross sections of the
                                    potential energy surface.  See $SURF. 

            single geometry property options: 

                 = PROP      Properties will be calculated.  A $DATA
                            
deck and converged $VEC group should be
         
                   input.  Optionally, orbital localization
                            
can be done.  See $ELPOT, etc.

                 = MOROKUMA  Performs monomer energy decomposition.
                            
See the $MOROKM group.

                 = TRANSITN  Compute radiative transition moment.
                            
See the $TRANST group.
                
= SPINORBT  Compute spin-orbit coupling.
                            
See the $TRANST group.

                 = FFIELD    applies finite electric fields, most
                            
commonly to extract polarizabilities.
                            
See the $FFCALC group.

                 = TDHF      analytic computation of time dependent
                            
polarizabilities.  See the $TDHF group. 

              * * * * * * * * * * * * * * * * * * * * * * * * *
             
Note that RUNTYPs involving the energy gradient,
             
which are GRADIENT, HESSIAN, OPTIMIZE, SADPOINT,
             
IRC, GRADEXTR, and DRC, cannot be used for any
             
CI or MP2 computation, except when SCFTYP=RHF.

             
* * * * * * * * * * * * * * * * * * * * * * * * *

  EXETYP = RUN       Actually do the run. (default)

                 = CHECK     Wavefunction and energy will not be
                            
evaluated.  This lets you speedily
                            
check input and memory requirements.
   
                         See the overview section for details.

                 = DEBUG     Massive amounts of output are printed,
                            
useful only if you hate trees.

                 = routine   Maximum output is generated by the
                            
routine named.  Check the source for
                            
the routines this applies to. 

 

          MAXIT  =           Maximum number of SCF iteration cycles.
                            
Pertains only to RHF, UHF, ROHF, or
                            
GVB runs.  See also MAXIT in $MCSCF.
                            
(default = 30)

                          
* * * * * * * 

          ICHARG =           Molecular charge.  (default=0, neutral)
 

          MULT   =           Multiplicity of the electronic state

                 = 1         singlet (default)
                
= 2,3,...   doublet, triplet, and so on.
 

             ICHARG and MULT are used directly for RHF, UHF, ROHF.
            
For GVB, these are implicit in the $SCF input, while
            
for MCSCF or CI, these are implicit in $DRT/$CIDRT or
            
$DET/$CIDET input.  You must still give them correctly. 

                           * * * * * * *

          ECP    =           effective core potential control.

                 = NONE      all electron calculation (default).

                 = READ      read the potentials in $ECP group.

                 = SBK       use Stevens, Basch, Krauss, Jasien,
               
             Cundari potentials for all heavy
                            
atoms (Li-Rn are available).

                 = HW        use Hay, Wadt potentials for all the
                            
heavy atoms (Na-Xe are available). 

  

            * * * the next three control molecular geometry * * * 

          COORD  = choice for molecular geometry in $DATA.

                 = UNIQUE    only the symmetry unique atoms will be
                            
given, in Cartesian coords (default).

                 = HINT      only the symmetry unique atoms will be
                            
given, in Hilderbrandt style internals.

                 = CART      Cartesian coordinates will be input.
                            
Please read the warning just below!!!

                 = ZMT       GAUSSIAN style internals will be input.

                 = ZMTMPC    MOPAC style internals will be input.

                 = FRAGONLY  means no part of the system is treated
                            
by ab initio means, hence $DATA is not
                            
given.  The system is specified by $EFRAG. 

            Note that the CART, ZMT, ZMTMPC choices require input of all atoms in the molecule.  These three also orient the molecule, and then determine which atoms are unique.  The  reorientation is very likely to change the order of the  atoms from what you input.  When the point group contains a 3-fold or higher rotation axis, the degenerate moments of inertia often cause problems choosing correct symmetry  unique axes, in which case you must use COORD=UNIQUE  rather than Z-matrices. 

            Warning:  The reorientation into principal axes is done
           
only for atomic coordinates, and is not applied to the
           
axis dependent data in the following groups: $VEC, $HESS,
           
$GRAD, $DIPDR, $VIB, nor Cartesian coords of effective
           
fragments in $EFRAG.  COORD=UNIQUE avoids reorientation,
           
and thus is the safest way to read these. 

            Note that the choices CART, ZMT, ZMTMPC require the use
           
of a $BASIS group to define the basis set.  The first
           
two choices might or might not use $BASIS, as you wish. 

          UNITS  = distance units, any angles must be in degrees.

                 = ANGS      Angstroms (default)

                 = BOHR      Bohr atomic units 

          NZVAR  = 0  Use Cartesian coordinates (default).

                 = M  If COORD=ZMT or ZMTMPC and a $ZMAT is not given:
                     
the internal coordinates will be those defining
                     
the molecule in $DATA.  In this case, $DATA must
                     
not contain any dummy atoms.  M is usually 3N-6,
                     
or 3N-5 for linear.

                 = M  For other COORD choices, or if $ZMAT is given:
                     
the internal coordinates will be those defined
                     
in $ZMAT.  This allows more sophisticated
                     
internal coordinate choices.  M is ordinarily
                     
3N-6 (3N-5), unless $ZMAT has linear bends. 

            NZVAR refers mainly to the coordinates used by OPTIMIZE
           
or SADPOINT runs, but may also print the internal's
           
values for other run types.  You can use internals to
           
define the molecule, but Cartesians during optimizations!

          LOCAL  =           controls orbital localization.

                 = NONE      Skip localization (default).

                 = BOYS      Do Foster-Boys localization.

                 = RUEDNBRG  Do Edmiston-Ruedenberg localization.

                 = POP       Do Pipek-Mezey population localization.
                            
See the $LOCAL group.   Localization
                            
does not work for SCFTYP=GVB or CITYP.
 

 

                 * * * interfaces to other programs * * * 

          MOLPLT = flag that produces an input deck for a molecule
                  
drawing program distributed with GAMESS.
                  
(default is .FALSE.) 

          PLTORB = flag that produces an input deck for an orbital
                  
plotting program distributed with GAMESS.
                  
(default is .FALSE.) 

          AIMPAC = flag to create an input deck for Bader's atoms
                  
in molecules properties code. (default=.FALSE.)
                  
For information about this program, contact

                       Richard F.W. Bader
                      
Dept. of Chemistry
                      
McMaster University
                      
Hamilton, Ontario  L8S-4M1 Canada
                      
bader@sscvax.cis.mcmaster.ca 

          RPAC   = flag to create the input files for Bouman and
                  
Hansen's RPAC electronic excitation and NMR
                  
shieldings program.  RPAC works only with
                  
RHF wavefunctions.  Contact Prof. Aage Hansen
                  
in Copenhagen (nahaeh@vm.uni-c.dk) about this
                  
program.  (default is .FALSE.) 

          FRIEND = string to prepare input to other quantum
                  
programs, choose from

                 = HONDO    for HONDO 8.2

                 = MELDF    for MELDF

                 = GAMESSUK for GAMESS (UK Daresbury version)

                 = GAUSSIAN for Gaussian 9x

                 = ALL      for all of the above

 

          PLTORB, MOLPLT, and AIMPAC decks are written to file
         
PUNCH at the end of the job.  The two binary disk
         
files output by RPAC are written at the end of the
         
job.  Thus all of these correspond to the final
         
geometry encountered during the job. 

          In contrast, selecting FRIEND turns the job into a
         
CHECK run only, no matter how you set EXETYP.  Thus the
         
geometry is that encountered in $DATA.  The input is
         
added to the PUNCH file, and may require some (usually
         
minimal) massaging. 

          PLTORB and MOLPLT are written even for EXETYP=CHECK.
         
AIMPAC requires at least RUNTYP=PROP.  RPAC requires at
         
least RUNTYP=ENERGY, and you must take action to save
         
the binary files AOINTS and WORK15. 

             The NBO program of Frank Weinhold's group can be
         
attached to GAMESS.  The input to control the natural
         
bond order analysis is read by the add in code, so is
         
not described here.  The NBO program is available by
         
anonymous FTP to ftp.osc.edu, in the directory
         
pub/chemistry/software/SOURCES/FORTRAN/nbo
 

 

                 * * * computation control switches * * * 

             For the most part, the default is the only sensible
         
value, and unless you are sure of what you are doing,
         
these probably should not be touched. 

          NPRINT =           Print/punch control flag
                            
See also EXETYP for debug info.
               
             (options -7 to 5 are primarily debug)

                 = -7        Extra printing from Boys localization.
                
= -6        debug for geometry searches
                
= -5        minimal output
                
= -4        print 2e-contribution to gradient.
                
= -3        print 1e-contribution to gradient.
                
= -2        normal printing, no punch file
                
=  1        extra printing for basis,symmetry,ZMAT
                
=  2        extra printing for MO guess routines
                
=  3        print out property and 1e- integrals
                
=  4        print out 2e- integrals
                
=  5        print out SCF data for each cycle.
                            
(Fock and density matrices, current MOs
                
=  6        same as 7, but wider 132 columns output.
                            
This option isn't perfect.
                
=  7        normal printing and punching (default)
                
=  8        more printout than 7. The extra output
                            
is (AO) Mulliken and overlap population
                            
analysis, eigenvalues, Lagrangians, ...
                
=  9        everything in 8 plus Lowdin population
                            
analysis, final density matrix.

          NOSYM  = 0     the symmetry specified in $DATA is used
                        
as much as possible in integrals, SCF,
                        
gradients, etc.  (this is the default)

                 = 1     the symmetry specified in the $DATA group
                        
is used to build the molecule, then
                        
symmetry is not used again.   Some GVB
                        
or MCSCF runs (those without a totally
                        
symmetric charge density) require you
                        
request no symmetry. 

          INTTYP = POPLE use fast Pople routines for sp integral
                        
blocks, and HONDO Rys polynomial code for
                        
all other integrals.  (default)

                 = HONDO use HONDO/Rys integrals for all integrals.
                        
This option produces slightly more accurate
                        
integrals but is also slower. 

          NORMF  = 0     normalize the basis functions (default)

                 = 1     no normalization 

          NORMP  = 0     input contraction coefficients refer to
                        
normalized Gaussian primitives. (default)

                 = 1     the opposite. 

          ITOL   =       primitive cutoff factor (default=20)

                 = n     products of primitives whose exponential
              
          factor is less than 10**(-n) are skipped. 

          ICUT   = n     integrals less than 10.0**(-n) are not
                        
saved on disk. (default = 9) 

 

                      * * * restart options * * * 

          IREST  =       restart control options
                        
(for OPTIMIZE run restarts, see $STATPT)
                        
Note that this option is unreliable!

                 = -1    reuse dictionary file from previous run,
                        
useful with GEOM=DAF and/or GUESS=MOSAVED.
                        
Otherwise, this option is the same as 0.

                 = 0     normal run (default)
                
= 1     2e restart (1-e integrals and MOs saved)
                
= 2     SCF restart (1-,2-e integrls and MOs saved)
                
= 3     1e gradient restart
                
= 4     2e gradient restart 

          GEOM   =       select where to obtain molecular geometry

                 = INPUT from $DATA input (default for IREST=0)
                
= DAF   read from DICTNRY file (default otherwise) 

              As noted in the first chapter, binary file restart is not a well tested option!

Seitenanfang   Input (allgemein)