Startseite    

Lineares H4, CI

Input

S0

!
! H4 2plus, CI
!
$CONTRL SCFTYP=RHF MULT=1 ICHARG=2 RUNTYP=ENERGY COORD=UNIQUE CITYP=GUGA $END
$SYSTEM TIMLIM=1000 MEMORY=5000000 $END
$BASIS GBASIS=STO NGAUSS=6 $END
$CIDRT GROUP=D2H IEXCIT=2 NFZC=0 NDOC=1 NALP=0 NVAL=3 $END
$GUGDIA NSTATE=4 $END
$GUGDM IROOT=1 NFLGDM(1)=1 $END
$GUGDM2 WSTATE(1)=1.0,0.0 $END
$GUESS GUESS=HUCKEL $END
$DATA
H4 2plus, CI
DNH 2

H 1.0 0.000 0.500 0.000
H 1.0 0.000 1.500 0.000
$END

S1

!
! H4 2plus, CI, S1
!
$CONTRL SCFTYP=RHF MULT=1 ICHARG=2 RUNTYP=ENERGY COORD=UNIQUE CITYP=GUGA $END
$SYSTEM TIMLIM=1000 MEMORY=5000000 $END
$BASIS GBASIS=STO NGAUSS=6 $END
$CIDRT GROUP=D2H IEXCIT=2 NFZC=0 NDOC=1 NALP=0 NVAL=3 $END
$GUGDIA NSTATE=4 $END
$GUGDM IROOT=2 NFLGDM(2)=1 $END
$GUGDM2 WSTATE(1)=0.0,1.0 $END
$GUESS GUESS=HUCKEL $END
$DATA
H4 2plus, CI, S1
DNH 2

H 1.0 0.000 0.500 0.000
H 1.0 0.000 1.500 0.000
$END
 

T1

!
! H4 2plus, CI, Triplett
!
$CONTRL SCFTYP=ROHF MULT=3 ICHARG=2 RUNTYP=ENERGY COORD=UNIQUE CITYP=GUGA $END
$SYSTEM TIMLIM=1000 MEMORY=5000000 $END
$BASIS GBASIS=STO NGAUSS=6 $END
$CIDRT GROUP=D2H IEXCIT=2 NFZC=0 NDOC=0 NALP=2 NVAL=2 $END
$GUGDIA NSTATE=4 $END
$GUGDM IROOT=1 NFLGDM(1)=1 $END
$GUGDM2 WSTATE(1)=1.0,0.0 $END
$GUESS GUESS=HUCKEL $END
$DATA
H4 2plus, CI, Triplett
DNH 2

H 1.0 0.000 0.500 0.000
H 1.0 0.000 1.500 0.000
$END

 

Vergleich T1, S0 und S1 anhand von H42+; T1: schwarz, S0: dunkelblau, S1: dunkelrot

----------------------- ----------------------------
GUGA DISTINCT ROW TABLE WRITTEN BY B.R.BROOKS,P.SAXE
----------------------- ----------------------------

GROUP=D2H   NPRT= 0
FORS= F     INTACT= F
FOCI= F     MXNINT= 20000
SOCI= F     MXNEME= 7500
IEXCIT= 2   NWORD = 180018

-CORE-  -INTERNAL-  -EXTERNAL-
NFZC= 0   NDOC= 0    NEXT= 0
NMCC= 0   NAOS= 0    NFZV= 0
NBOS= 0
NALP= 2
NVAL= 2

THE MAXIMUM ELECTRON EXCITATION WILL BE 2

GROUP=D2H   NPRT= 0
FORS= F     INTACT= F
FOCI= F     MXNINT= 20000
SOCI= F     MXNEME= 7500
IEXCIT= 2   NWORD = 180018

-CORE-   -INTERNAL-   -EXTERNAL-
NFZC= 0   
NDOC= 1      NEXT= 0
NMCC= 0    NAOS= 0      NFZV= 0
NBOS= 0
NALP= 0
NVAL= 3

THE MAXIMUM ELECTRON EXCITATION WILL BE 2

S1 ist identisch mit S0


SYMMETRIES FOR THE 0 CORE, 4 ACTIVE, 0 EXTERNAL MO-S ARE
ACTIVE=  AG   B2U   AG   B2U
         ALP  ALP   VAL  VAL
SYMMETRIES FOR THE 0 CORE, 4 ACTIVE, 0 EXTERNAL MO-S ARE
ACTIVE=  AG   B2U   AG   B2U
         DOC  VAL   VAL  VAL
S1: identisch mit S0

MOLECULAR CHARGE = 2
NUMBER OF ALPHA ELECTRONS = 2
NUMBER OF BETA ELECTRONS = 0


MOLECULAR CHARGE = 2
NUMBER OF ALPHA ELECTRONS = 1
NUMBER OF BETA ELECTRONS = 1

S1: identisch S0


THE ELECTRONIC STATE IS 3-B2U
THE ELECTRONIC STATE IS 1-AG

S1: keine Angabe


THE 4 LOWEST DIAGONAL ELEMENTS OF THE HAMILTONIAN ARE
-0.8396674 (CSF 1) -0.1928631 (CSF 3) -0.0439477 (CSF 2)
0.4620994 (CSF 4)

THE 6 LOWEST DIAGONAL ELEMENTS OF THE HAMILTONIAN ARE
-0.9028218 (CSF 1) -0.3532036 (CSF 4) -0.2818739 (CSF 5)
0.3120039 (CSF 6) 0.3863962 (CSF 3) 1.0418349 (CSF 2)

S1: identisch mit S0-Berechnung

STATE # 1 ENERGY = -0.841305547
STATE # 1 ENERGY = -0.954596443
S1: identisch mit S0-Berechnung

CSF    COEF   OCCUPANCY (IGNORING CORE)
---    ----   --------- --------- -----
 1   0.999363   1100
Der niedrigste Triplettzustand (STATE #1) wird durch eine einzige Konfiguration beschrieben.

CSF    COEF   OCCUPANCY (IGNORING CORE)
---    ----   --------- --------- -----
 1   0.963278    2000
 3  -0.104224    0101
 4  -0.237105    0200

S1: identisch mit S0-Berechnung


STATE # 2 ENERGY = -0.210124108
STATE # 2 ENERGY = -0.456908767
S1: identisch mit S0-Berechnung

CSF   COEF    OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
2   0.283029    1001
3   0.958208    0110
CSF   COEF    OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
1   0.205823    2000
2  -0.089316    0002
4   0.769000    0200
5  -0.596019    1010
S1: identisch mit S0-Berechnung


STATE # 3 ENERGY = -0.037384863
STATE # 3 ENERGY = -0.295612639
S1: identisch mit S0-Berechnung

CSF    COEF    OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
2    0.951665    1001
3   -0.275171    0110
4    0.136212    0011
CSF    COEF    OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
1    0.119297     2000
3    0.253104     0101
4    0.527400     0200
5    0.750907     1010
6   -0.280305     0020
S1: identisch mit S0-Berechnung


STATE # 4 ENERGY = 0.474435710
STATE # 4 ENERGY = 0.183488254
S1: identisch mit S0

CSF    COEF   OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
2   -0.119258   1001
3    0.078187   0110
4    0.989172   0011
CSF    COEF   OCCUPANCY (IGNORING CORE)
--- ---- --------- --------- -----
1    0.107080   2000
2   -0.098314   0002
3    0.620868   0101
6    0.768431   0020
S1: identisch mit S0-Berechnung

D. h. die obigen Angaben werden bei jeder CI-Rechnung berechnet, unabhängig von der Wahl des Elektronenzustandes (ROOT=N)


...... END OF CI-MATRIX DIAGONALIZATION ......

 --------------------------------------
CI DENSITY MATRIX AND NATURAL ORBITALS
--------------------------------------
NFLGDM= 1 0 0 0
NWORD= 0   IROOT= 1   IBLOCK= 0
THE ENERGY OF STATE -IROOT- IS -0.8413055466
NUMBER OF STATES = 4
NUMBER OF CONFIGURATIONS = 4
NUMBER OF 1E-LOOPS = 10

NFLGDM= 1 0 0 0
NWORD= 0  
IROOT= 1   IBLOCK= 0
THE ENERGY OF STATE
-IROOT- IS -0.9545964433
NUMBER OF STATES = 4
NUMBER OF CONFIGURATIONS = 6
NUMBER OF 1E-LOOPS = 12

NFLGDM= 1 1 0 0
Die zweite 1 bedeutet, dass auch die Dichtematrix des zweiten elektronischen Zustandes ausgegeben wird.
NWORD= 0 IROOT= 2 IBLOCK= 0
THE ENERGY OF STATE
-IROOT- IS -0.4569087667
NUMBER OF STATES = 4
NUMBER OF CONFIGURATIONS = 6
NUMBER OF 1E-LOOPS = 12


CI EIGENSTATE 1 TOTAL ENERGY = -0.8413055466

NATURAL ORBITALS IN ATOMIC ORBITAL BASIS
----------------------------------------
            1           2        3      4
          0.9987     0.9987   0.0013  0.0013
1 H 1 S -0.482878 -0.504029  1.068718 -0.459831
2 H 2 S -0.482878  0.504029 -1.068718 -0.459831
3 H 3 S -0.190987 -0.452455 -0.716606  0.784135
4 H 4 S -0.190987  0.452455  0.716606  0.784135

CI EIGENSTATE 1 TOTAL ENERGY = -0.9545964433

             1         2        3         4
          1.8577    0.1368    0.0051    0.0004
1 H 1 S -0.468039  0.698869 -0.474927 -0.952777
2 H 2 S -0.468039 -0.698869 -0.474927  0.952777
3 H 3 S -0.215781  0.307258  0.777678  0.789830
4 H 4 S -0.215781 -0.307258  0.777678 -0.789830

CI EIGENSTATE 2 TOTAL ENERGY = -0.4569087667

             1         2         3        4
          1.1841    0.5389    0.2609    0.0161
1 H 1 S  0.389310 -0.661049 -0.087351 -1.115635
2 H 2 S -0.389310 -0.661049 -0.087351  1.115635
3 H 3 S  0.525029  0.307330  0.746252  0.665270
4 H 4 S -0.525029  0.307330  0.746252 -0.665270

Natürliche Orbitale (NATURAL ORBITALS) bedeutet, dass für jedes Elektronenpaar ein Orbital zugewiesen wird (Zwei-Elektronen-Funktion, Geminal). Die obigen Spalten geben im Kopf die Elektronenzahl (maximal 2) und die Amplitude dieses Orbitals an den Atompositionen an. In S0 ist das niedrigste natürliche Orbital fast vollständig besetzt. In S1 ist die Besetzung des ersten natürlichen Orbitals 1.18, im zweiten 0.54 usw..

-----------------------------
properties for the CI density
-----------------------------

-----------------
ENERGY COMPONENTS
-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -3.4411706249
TWO ELECTRON ENERGY = 0.3067636649
NUCLEAR REPULSION ENERGY = 2.2931014134
------------------
TOTAL ENERGY = -0.8413055466

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.3067636649
NUCLEUS-ELECTRON POTENTIAL ENERGY = -4.7097396769
NUCLEUS-NUCLEUS POTENTIAL ENERGY = 2.2931014134
------------------
TOTAL POTENTIAL ENERGY = -2.1098745986
TOTAL KINETIC ENERGY = 1.2685690520
VIRIAL RATIO (V/T) = 1.6631925517

-----------------
ENERGY COMPONENTS
-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -3.6786678120
TWO ELECTRON ENERGY = 0.4309699554
NUCLEAR REPULSION ENERGY = 2.2931014134
------------------
TOTAL ENERGY = -0.9545964433

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.4309699554
NUCLEUS-ELECTRON POTENTIAL ENERGY = -4.7311444044
NUCLEUS-NUCLEUS POTENTIAL ENERGY = 2.2931014134
------------------
TOTAL POTENTIAL ENERGY = -2.0070730357
TOTAL KINETIC ENERGY = 1.0524765924
VIRIAL RATIO (V/T) = 1.9070001653

-----------------
ENERGY COMPONENTS
-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -3.1441488092
TWO ELECTRON ENERGY = 0.3941386292
NUCLEAR REPULSION ENERGY = 2.2931014134
------------------
TOTAL ENERGY = -0.4569087667

ELECTRON-ELECTRON POTENTIAL ENERGY = 0.3941386292
NUCLEUS-ELECTRON POTENTIAL ENERGY = -4.7029350157
NUCLEUS-NUCLEUS POTENTIAL ENERGY = 2.2931014134
------------------
TOTAL POTENTIAL ENERGY = -2.0156949731
TOTAL KINETIC ENERGY = 1.5587862064
VIRIAL RATIO (V/T) = 1.2931183025

Die Gesamtenergie (TOTAL ENERGY) ist natürlich für S0 am niedrigsten und T1 liegt niedriger als S1. Die gleiche Reihenfolge gilt auch für die Energie eines Elektrons im Potentialfeld der 4 Kerne (ONE ELECTRON ENERGY).
Bemerkenswert ist, dass die Elektron-Elektron-Abstoßungsenergie (ELECTRON-ELECTRON POTENTIAL ENERGY = TWO ELECTRON ENERGY) im Triplettzustand am geringsten ist. Elektronen mit parallelen Spin weichen einander aus!
Der Virialkoeffizient (VIRIAL RATIO) sollte bei der Gleichgewichtsgeometrie gleich zwei sein. Da wir eine willkürliche Geometrie angenommen haben, ist es nicht sinnvoll die obigen Werte zu diskutieren.
---------------------------------------
MULLIKEN AND LOWDIN POPULATION ANALYSES
---------------------------------------

MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL

        1          2        3         4
     0.998738  0.998738  0.001262  0.001262

1    0.405352  0.213519  0.000361  0.000119
2    0.405352  0.213519  0.000361  0.000119
3    0.094017  0.285850  0.000270  0.000512
4    0.094017  0.285850  0.000270  0.000512
Im ersten MO befindet fast ein Elektron, welches hauptsächlich auf die beiden Innen-Atome verteilt ist. Im zweiten MO befinden sich ebenfalls fast ein Elektron. Dieses hat aber eine größere Wahrscheinlichkeit, auf den Außen-Atommen angetroffen zu werden.

WARNING! CI POPULATIONS SHOWN ABOVE ARE FOR THE NATURAL ORBITALS.
IGNORE THE ABOVE DATA FOR CI FUNCTIONS WHICH ARE NOT OF -FORS- TYPE.
THE FOLLOWING POPULATIONS ARE CORRECT FOR ANY CI WAVEFUNCTION.

         1        2         3         4
     1.857728  0.136778  0.005068  0.000425

1    0.724796  0.044688  0.000557  0.000074
2    0.724796  0.044688  0.000557  0.000074
3    0.204068  0.023701  0.001977  0.000139
4    0.204068  0.023701  0.001977  0.000139
Im S0-Zustand befinden sich fast beide Elektronen (ohne CI natürlich exakt beide)im ersten MO. Ihre Aufenthaltswahrscheinlichkeit ist an den Innen-Atomen am größten.

         1         2        3         4
     1.184083  0.538863  0.260941  0.016113

1    0.181520  0.284938 -0.007509  0.005586
2    0.181520  0.284938 -0.007509  0.005586
3    0.410522 -0.015506  0.137979  0.002470
4    0.410522 -0.015506  0.137979  0.002470
Im S1-Zustand befinden sich 1.18 Elektronen im MO1, 0.53 in MO2, 0.26 in MO3.


----- POPULATIONS IN EACH AO -----
          MULLIKEN   LOWDIN
1 H 1 S   0.61935   0.59123
2 H 2 S   0.61935   0.59123
3 H 3 S   0.38065   0.40877
4 H 4 S   0.38065   0.40877

          MULLIKEN  LOWDIN
1 H 1 S   0.77011   0.75098
2 H 2 S   0.77011   0.75098
3 H 3 S   0.22989   0.24902
4 H 4 S   0.22989   0.24902

          MULLIKEN  LOWDIN
1 H 1 S   0.46454   0.44491
2 H 2 S   0.46454   0.44491
3 H 3 S   0.53546   0.55509
4 H 4 S   0.53546   0.55509



----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----
(OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

        1           2          3           4

1   0.4883098
2  -0.0109390   0.4883098
3   0.1581845  -0.0162042   0.2423106
4  -0.0162042   0.1581845  -0.0036420   0.2423106

         1         2            3           4

1   0.4752887
2   0.1693402   0.4752887
3   0.1066977   0.0187884   0.1027420
4   0.0187884   0.1066977   0.0016569   0.1027420

         1          2           3           4

1   0.4369837
2   0.0188508   0.4369837
3   0.0514522  -0.0427517   0.5297430
4  -0.0427517   0.0514522  -0.0029786   0.5297430



TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS
ATOM  MULL.POP.   CHARGE    LOW.POP.    CHARGE
1 H   0.619351   0.380649   0.591230   0.408770
2 H   0.619351   0.380649   0.591230   0.408770
3 H   0.380649   0.619351   0.408770   0.591230
4 H   0.380649   0.619351   0.408770   0.591230

ATOM  MULL.POP.   CHARGE    LOW.POP.    CHARGE
1 H   0.770115   0.229885   0.750978   0.249022
2 H   0.770115   0.229885   0.750978   0.249022
3 H   0.229885   0.770115   0.249022   0.750978
4 H   0.229885   0.770115   0.249022   0.750978

ATOM  MULL.POP.   CHARGE    LOW.POP.    CHARGE
1 H   0.464535   0.535465   0.444911   0.555089
2 H   0.464535   0.535465   0.444911   0.555089
3 H   0.535465   0.464535   0.555089   0.444911
4 H   0.535465   0.464535   0.555089   0.444911

Im Grundzustand tragen die End-Atome (3 und 4) die geringste Elektronendichte, im T1 schon mehr, am meisten in S1.